0960-894X(95)00313-4

THE DEVELOPMENT OF A NOVEL SERIES OF NON-PEPTIDE TACHYKININ NK, RECEPTOR SELECTIVE ANTAGONISTS

P. Boden, J. M. Eden, J. Hodgson, D. C. Horwell, M. C. Pritchard,* J. Raphy and N. Suman-Chauhan.

Parke-Davis Neuroscience Research Centre, Addenbrookes Hospital Site, Hills Rd., CAMBRIDGE, CB2 2QB, UK.

Abstract: In this paper we describe the transformation of a series of modified dipeptide NK₃ receptor selective ligands, previously developed from a hit identified from the screening of a dipeptide chemical library, into non-peptide, nanomolar affinity NK₃ receptor selective antagonists eg. PD160946 and PD161182. PD 161182 blocks senktide-induced human NK₃ receptor mediated increases in intracellular calcium levels with a Ke of 0.88nM.

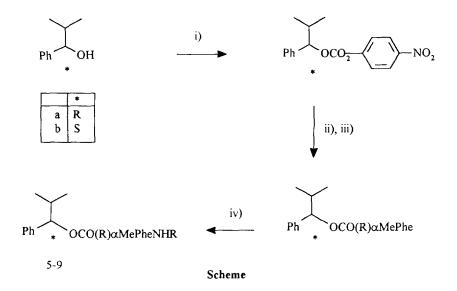
INTRODUCTION

The potentially important therapeutic indications¹ that have been associated with the tachykinins has provided a major stimulus for the development of a number of structurally diverse antagonists for both the NK₁ and NK₂ receptor types.² Notable examples of these antagonists include the piperidine based NK₁ receptor antagonists SR140333³ and CP99994⁴ and NK₂ receptor antagonists SR48968⁵ and GR159897.⁶ In contrast, however, only one nonpeptide NK₃ receptor selective antagonist, SR142801 (see figure 1), has thus far been reported.⁷

Our interest in the design of non-peptide ligands for tachykinin receptors is illustrated by the development of "peptoid" antagonists for both the NK₁⁸ and NK₂⁹ receptor types. We have also published¹⁰ on the development of small molecule NK₃ receptor selective antagonists eg. 2 and 3 (PD157672) (see figure 1). These modified dipeptide derivatives were developed from an initial micromolar affinity dipeptide lead, Boc(S)Phe(S)PheNH₂, which was identified from the screening of a dipeptide chemical library.¹¹

In this paper we report on further studies conducted in this area and describe how we have converted this series of dipeptide NK₃ receptor ligands into nanomolar affinity, non-peptide NK₃ receptor selective antagonists.

1774 P. BODEN *et al.*


RESULTS AND DISCUSSION

Having identified ¹⁰ modified dipeptide NK₃ receptor selective antagonists such as 2 and 3 (see figure 1), our next key objective was to develop lower molecular weight, non-peptide analogues of this class of compound. One chemical strategy that was followed in order to achieve this objective was to search for suitable replacements for the bulky Boc(S)Phe N-terminal moiety of the dipeptide series. A promising lead for this study proved to be a compound (4, see figure 1) which was initially prepared as part of our NK₁ receptor programme. In addition to having micromolar affinity (IC₅₀=1400nM) for the targeted NK₁ receptor, this mono amino acid derivative also exhibited similar affinity (IC₅₀=1200nM) for the NK₃ receptor type.

$$Boc(S)Phe(S)PheNH_2 \\ NK_3 \ , IC_{50} = 1500 nM \\ (1) \\ RS \\ RS \\ SR \\ 142801 \\ NK_3 \ , IC_{50} = 0.21 nM \\ RS \\ SOC(S)Phe(R) \alpha MePheNH(CH_2)_8OH \\ NK_3 \ , IC_{50} = 40 nM \\ (2) \\ Ph \\ OCO(R) \alpha MeTrpNH \\ S \\ NK_3 \ , IC_{50} = 1200 nM \\ (4) \\ Ph \\ N(Me)COMe \\ SR \\ 142801 \\ NK_3 \ , IC_{50} = 0.21 nM \\ RS \\ SR \\ Id_{2801} \\ Id_{2801}$$

Figure 1

Since this mono amino acid derivative (4) bore some structural resemblance to the C-terminal segment of the dipeptide class of NK_3 receptor ligands (ie. both contained an α -methylated aromatic amino acid flanked by a lipophilic C-terminal), it was hypothesized that the i-propylbenzyloxycarbonyl moiety of 4 may represent a potential replacement for the Boc(S)Phe moiety of the dipeptide compounds. In order to investigate this hypothesis we prepared compounds 5a and 5b (see scheme and table I) where the $(R)\alpha$ MeTrp moiety has been replaced by the $(R)\alpha$ MePhe residue present in the dipeptide series. As we wished to identify

Reagents and conditions: i) p-nitrophenylchloroformate, DMAP, DMF; ii) (R)αMePheOMe, DMF; iii) LiOH, THF/H₂O; iv) RNH₃, HBTU, DIPEA, DMF.

the preferred stereochemistry at the substituted benzyloxycarbonyl N-terminal for optimal NK₃ receptor affinity (4 is a mixture of diastereoisomers), we prepared both possible stereoisomers at this centre. Encouraged by the significant increase in affinity induced by these changes, the R₁R isomer 5a has an IC₅₀ of 74nM at the NK₃ receptor (see table I), derivatives of 5a and 5b were prepared in which the preferred C-terminal segments that had previously been identified from the dipeptide series were appended. For example, appending an amino octanol moiety to the C-terminal provided compounds 6a and 6b (see table I) with the S₁R stereoisomer (6b) showing very similar affinity (IC₅₀=52nM) to its dipeptide derived parent (3, IC₅₀=40nM). It is interesting to note that replacing the α -methyl benzylamine C-terminal group in 5 with the amino octanol moieties in 6 results in a change in stereochemical preference at the N-terminal substituted benzyl group with respect to NK₃ receptor binding affinity. Thus the R₁R isomer 5a has markedly higher affinity (IC₅₀=74nM) than its S₁R diastereoisomer 5b (IC₅₀>10000nM) whereas the S₁R isomer 6b in the C-terminal amino octanol series is clearly preferred for optimal NK₃ receptor binding. Further chemical manipulation of the C-terminal segment of 6a yielded the urea derivative 7b which exhibited marginally higher affinity (IC₅₀=43nM, see table I).

The highest affinity compounds in this non-peptide series were obtained by subsequent substitution of the phenyl ring of the α MePhe residue. Thus the 2-fluoro (8b, IC₅₀=16nM) and

1776 P. BODEN et al.

2,3-difluoro (9b, IC₅₀=7.3nM) derivatives exhibited equal or higher affinity than not only the parent dipeptide lead PD157672 (3, IC₅₀=16nM) but also the peptide ligands NKB (IC₅₀=10nM) and senktide (IC₅₀=21nM) (see table I and figure 2).

Table I: Receptor Binding Affinities for Human NK, Receptor Expressed in CHO Cells.12

Compound No.	*	R	IC ₅₀ , nM²
5a	R	-(S)CH(Me)Ph	74 (45-180)
5b	S	-(S)CH(Me)Ph	>10000
ба	R	-(CH ₂) ₈ OH	350 (220-870)
6 b	S	-(CH ₂) ₈ OH	52 (27-58)
7 ь	S	-(CH ₂) ₇ NHCONH ₂	43 (19-99)
8b ^b	S	-(CH ₂) ₇ NHCONH ₂	16 (14-20)
9b°	S	-(CH ₂) ₇ NHCONH ₂	7.3 (5.7-13)
NKB			10 (7.0-13)
Senktide			21 (12-31)

a) Values shown represent the geometric mean of 3-6 separate experiments carried out using [1251][MePhe7]NKB to label cloned human NK3 receptors stably expressed in CHO cells.12

b) aMePhe residue has 2-fluoro substituent (see figure 2).

c) aMePhe residue has 2,3-difluoro substituents (see figure 2).

$$Ph$$

NH(CH₂)₇NHCONH₂
 Ph

NH(CH₂)₇NHCONH₂
 Ph

NK₃, IC₅₀ = 16nM

NK₃, IC₅₀ = 7.3nM

(8b)

(9b)

Figure 2

In vitro functional assays in human and Guinea pig paradigms demonstrate that this novel class of non-peptide NK₃ receptor ligands are competitive antagonists at the NK₃ receptor (see table II). For example compound 9b exhibits a Ke of 0.88nM in blocking senktide induced responses at human NK₃ receptors expressed in CHO cells.

Table II: In Vitro Functional Data and Tachykinin Receptor Selectivity.

	In Vitro Functional Assays, Ke(nM)			Binding Affinities, IC ₅₀ (nM)		
Cmpd. No.	CHO Cells*	GP Hab.b	NK,c	NK_2^{d}	NK3°	
			(IM9)	(HUB)	(GP)	
8b	2.2	13	2200	1500	14	
(PD160946)	(1.6-11)	(4.8-21)	(750-3700)	(1300-1700)	(8.1-18)	
9 b	0.88	5.8	3000	790	3.7	
(PD161182)	(0.50-1.5)	(4.4-7.2)	(2900-3100)	(480-1100)	(1.1-5.8)	

a) Inhibition of senktide-evoked increases in intracellular calcium levels in CHO cells measured using the fluorescent indicator Fura2. ¹³ Equilibrium constants shown represent the mean of at least 3 separate experiments. b) Inhibition of senktide-induced increases in spontaneous firing of Guinea pig habenula neurones in vitro. ¹⁴ Values are the mean of at least 3 determinations.

c) Values shown represent the geometric mean of 3 separate experiments carried out using [125]Bolton-Hunter substance P to label NK₁ binding sites in human lymphoma IM9 cells.*

d) Values shown represent the geometric mean of 3 separate experiments carried out using [1251]NKA to label NK2 binding sites in membranes prepared from hamster urinary bladder.*

e)Values shown represent the geometric mean of 3-6 separate experiments carried out using [125]-[MePhe7]NKB to label NK, binding sites in Guinea pig cortical membranes. 12

1778 P. BODEN et al.

CONCLUSIONS

In this paper we have described the development of a novel series of high affinity, non-peptide NK₃ receptor selective antagonists. These ligands were derived from a series of modified dipeptide NK₃ receptor ligands which in turn originated from a weakly active dipeptide lead identified from the screening of a dipeptide chemical library.

We believe this study represents the first published example of the development of a high affinity non-peptide ligand for a membrane bound peptide receptor based upon the screening of a synthetic peptide chemical library.

More detailed studies delineating the SARs of this series of compounds will be published in full elsewhere.

ACKNOWLEDGEMENTS

The authors wish to thank Miss H. Chilvers, Mrs R. Franks, Miss P. Grimson and Mrs L. Webdale for their excellent technical assistance.

REFERENCES

- 1. Maggi, C. A.; Patacchini, R.; Rovero, P.; Giachetti, A. J. Auton. Pharmacol. 1993, 13, 23.
- See Giannis, A.; Kotler, T. Angew. Chem. Int. Ed. Engl. 1993, 32, 1244 and Watling, K. J.; Krause, J. E. Trends Pharmacl. Sci. 1993, 14, 81 for recent review articles.
- Jung, M.; Calassi, R.; Maruani, J.; Barnouin, M. C.; Souilhac, J.; Poncelet, M.; Gueudet, C.; Edmonds-Alt, X.; Soubrie, P.; Breliere, J. C.; Le Fur, G. Neuropharmacol. 1994, 33, 167.
- 4. Desai, M. C.; Lefkowitz, S. L.; Thadeio, P. F.; Longo, K. P.; Snider, R. M. J. Med. Chem. 1992, 35, 4911.
- Edmonds-Alt, X.; Vilain, P.; Goulaouic, P.; Proietto, V.; Van Broeck, D.; Advenier, C.; Naline, E.; Neliat, G.; Le Fur, G.; Breliere, J. C. Life Sci. 1992, 50, 101.
- Cooper, A. W. J.; Adams, H. S.; Bell, R.; Gore, P. M.; McElroy, A. B.; Pritchard, J. M.; Smith, P. W.; Ward, P. Bioorg. Med. Chem. Lett. 1994, 4, 1951.
- Edmonds-Alt, X.; Bichon, D.; Ducoux, J. P.; Heaulme, M.; Miloux, B.; Poncelet, M.; Proietto, V.; Van Broeck, D.; Vilain, P.; Neliat, G.; Soubrie, P.; Le Fur, G.; Breliere, J. C. Life Sci. 1995, 56, 27.
- 8. Boyle, S.; Guard, S.; Higginbottom, M.; Horwell, D. C.; Howson, W.; Hughes, J.; Mcknight, A. T.; Martin, K.; Pritchard, M. C.; O'Toole, J.; Raphy, J.; Rees, D. C.; Roberts, E.; Watling, K. J.; Woodruff, G. N. *Bioorg. Med. Chem.* 1994, 2, 357.
- Boyle, S.; Guard, S.; Hodgson, J.; Horwell, D. C.; Howson, W.; Hughes, J.; Mcknight, A. T.; Martin, K.; Pritchard, M. C.; Watling, K. J.; Woodruff, G. N. Bioorg. Med. Chem. 1994, 2, 101.
- Boden, P.; Eden, J. M.; Hodgson, J.; Horwell, D. C.; Howson, W.; Hughes, J.; McKnight, A. T.; Meecham, K.; Pritchard, M. C.; Raphy, J.; Ratcliffe, G. S.; Suman-Chauhan, N.; Woodruff, G. N. Bioorg. Med. Chem. Lett. 1994, 4, 1679.
- 11. Horwell, D. C.; Howson, W.; Rateliffe, G. S.; Rees, D. C. Bioorg. Med. Chem. Lett. 1993, 3, 799.
- Suman-Chauhan, N.; Grimson, P.; Guard, S.; Madden, Z.; Chung, F.-Z.; Watling, K.; Pinnock, R.; Woodruff, G.N. Eur. J. Pharmacol. Mol. Pharmacol. 1994, 269, 65.
- 13. Suman-Chauhan, N.; Daum, P.; Hill, D.; Woodruff, G. N. Br. J. Pharmacol. 1992, 107, 149P.
- 14. Boden, P.; Woodruff, G. N. Br. J. Pharmacol. 1994, 112, 717.

(Received in Belgium 24 April 1995)